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MODEL OF STEADY ISOTROPIC FLOW WITH POLYMER ADDITIVES 

V. A. Sosinovich and V. A. Tsyganov UDC 532.5:532.135 

The results of numerically solving the equation for the function describing, the 
length scale distribution of the turbulent velocity fluctuation energy in a steady 
isotropic flow of dilute linear high-molecular polymer solution are presented. 

Introduction 

In [i] a closed equation was derived for the function Pt(r) describing the length scale 
distribution of the turbulent velocity fluctuation energy in an isotropic flow of dilute high- 
molecular polymer solution. In this equation (cf. (ii) in [i]) what is new is the closed, i.e., 
fully expressed in terms of the unknown function Pt(r) and the solution parameters, form of 
the term I(r, t), which takes into account the effect of the polymer additives on the struc- 
ture of the turbulent flow. In deriving the expression for I(r, t) the mechanism of interac- 
tion of the polymer molecules and the turbulence described in [2, 3] was used. According to 
this mechanism, the viscosity of the dilute polymer solution is selective with respect to the 
nature of the fluid motion: it is not affected by rotational motion and increases sharply when 
the motion involves tension. 

Formulation of the Steady-State Problem 

With the expression for I(r, t), represented by Eqs. (21)-(26) in [i], Eq. (ll) of [I] 
can be solved numerically, given the initial form of the function P0(r) and the parameters ~, 
v D, E, L, and T. In this article we will consider only the steady-state case, when the func- 
tlon Pt(r) does not depend on time, and the equilibrium in the flow is maintained by the bal- 
ance between energy injection and dissipation. As will be seen from what follows, in the 
steady-state case the action of the polymer additives on the internal structure of the turbu- 
lent flow can be most graphically demonstrated. 

In Eq. (ii) [i] we pass to the limit as t + ~. Using the equalities 

lira p~ (r) = p ~  (,-) ~ p (r), 
~ (i) 

lira OPt(r) _ 0 ,  lira I(r,t)~__l(r), 

we can write the equation for P(r) in the form: 

d 2v q- 2g j ' ] / T r ~ d r  '] -~r q- p(r) + vpl (r) = - - ~ -  exp ---t-7 (2)  
dr o r / 3 L~ " 

I n t e g r a t i n g  t h i s  e q u a t i o n  wi th  r e s p e c t  t o  r from 0 to  r and us ing  Eq. (21)  from [1],~ t o g e t h e r  
with the equations 

I (O)= O, 8 =  15,;dP(r) i ( 3 ) dr ~r=o 
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we obtain the form of the steady-state equation for P(r): 
r 

+ t + +) 
b \ dr ' r 3 

,0xp( 5! 
We will go over to dimensionless notation in Eq. (4). In the steady-state case as the 

characteristic length it is convenient to choose the scale L on which energy is pumped into 

the flow. As the characteristic velocity we will take V~q, where q is the energy con- 

tained in unit volume of the turbulent flow in the steady state: 

2 Pc = "-f  q/L,  ~ -- 

The ,Reyno lds  number can be e x p r e s s e d  as  

2 
- - ~ q =  P(r )dr .  (5)  

o 

Then the characteristic values of the function P(r), the injection rate, the dissipation rate, 
which in the steady state is equal to it, and the turbulent fluctuation time scale will be: 

(2/3 q)8/2 L 
' T o =  ( 6 )  

R e -  •/r-•TqL (7.) 

Equation (4) now takes the dimensionless form: 

[ I . ~ d~]( d ~ 4\ n b(p) 2 ~exp(__pz) ' (8) 
2 -R--e-e ~- '7i ' -[ /~/3(~ dp ~ ] /3( tp) - - -~-G(9 ) P ---~- 

_ P /  

Here, p = r/L; the symbols A denote nondimensionalized quantities: 

b(p )=  P(r/L_______s 8== (9) 
Pc % 

The number n i s  d e t e r m i n e d  by t h e  r a t i o  o f  t h e  v i s c o s i t y  c o e f f i c e n t s  of  t h e  s o l u t i o n  Vp 
a t  t h e  p o i n t s  a t  which t h e  m o l e c u l e s  a r e  s t r e t c h e d  and t h e  v i s c o s i t y  o f  t h e  s o l v e n t :  

~p 
n - -  ( 1 0 )  

Th is  number i s  p r o p o r t i o n a l  to  the  po lymer  mo lecu le  c o n c e n t r a t i o n  Cp: 

n N c p N ,  (ii) 

where N may be assumed to  be a p p r o x i m a t e l y  e q u a l  t o  t h e  number o f  monomer u n i t s  in  t h e  p o l y -  
mer m o l e c u l e  [2,  3 ] .  

In  d i m e n s i o n l e s s  q u a n t i t i e s  t h e  p r o p e r t y  (5) o f  t h e  f u n c t i o n  P ( r )  can be w r i t t e n  in  t h e  
form: 

k (0) do --- 1. 
b 

In  d i m e n s i o n l e s s  v a r i a b l e s  t h e  q u a n t i t i e s  ~1 and ~2 w i l l  have t h e  form:  

1 

~(~ t=  3 #  [ k  (0) + b '  (P)] 
Here 

(12) 

(13) 

T T/_~ 
= T--~-- L q (14) 

represents the ratio of the characteristic relaxation times of the polymer molecule and the 
turbulence. The second of Eqs. (3) can be written in the dimensionless form: 
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~ '  (o) Re  ^ 
= 8. ( 1 5 )  

15 

It can also be obtained from Eq. (8) by passing to the limit as p + ~. From this equation it 

is clear that the quantity E in (8) is not a free parameter, but is linked to Re through the 

quantity P'(0), which is the result of the solution of Eq. (8) and the integral condition (12). 

Therefore, the problem of calculating the function P(p) can be posed as follows: for a given 

Re to choose a value of ~ such that the function P(p) found as a result of solving Eq. (8) 
satisfies condition (12). The solution must be obtained for values of n on the interval [0, 
~]. The value n = 0 corresponds to the absence of polymer: Cp = 0. Large values of n corres- 
pond to polymer concentrations Cp at which saturation sets in. 

When a change in the Reynolds number is achieved at the expense of a change in the fluc- 
tuating velocity at a fixed length scale L, the expression for 0)!2)i can be represented in the 
form: 

5 
o(,~) = T 2 R e ~  (! • F)  ' ( 1 6 )  

where T is the ratio of the relaxation time of the polymer molecule to the characteristic vis- 
cous dissipation time on the length scale L: 

V (17)  
TT 

where 
g Z 

~r = - - "  (18)  

The q u a n t i t y  T T i s  r e l a t e d  to  the t ime sca le  of  the t u r b u l e n t  f l u c t u a t i o n s  T c by the expres-  
s ion : 

"% ~- T ~ R e .  (19) 

In solving Eqs. (8) and (12) it is necessary to know the function G at each value of p 
for the chosen values of the Reynolds number and the relaxation time and concentration of the 
polymer molecules. As may be seen from (22), (23) in [i], which determine the function G, 
the value of this function does not depend directly on the variable p and on the^polymer mole- 
cule concentration. This dependence is realized implicitly through the variable Y: 

? = .= (P) , ( 2 0 )  
P' (o) 

whose value is determined by the structure of the acceleration field. Having chosen specific 
values of the quantities T, 9, and L (T = 10-3"sec, 9 = 10 -6 m2"sec -I, L = i0 -s m) and having 
thereby determined the value of T, we can calculate the function G in advance over the entire 
range of possible values of the variables Y and g and for various Reynolds numbers. In the 
process^of numerically solving the Eqs. (8), (12) it is possible to employ^the calculated val- 
ues of G, choosing those values which correspond to the current values of Y and e and the Re 
number for the calculation variant in question. 

Results of Numerically Solving the Equation for P(p) 

The form of the function P(p) obtained in solving Eqs. (8), (12) is shown in Fig. I. A 
comparison of the curves for different values of n (Fig. la) shows that as the polymer molecule 
concentration increases, the energy distribution is displaced towards larger length scales. 
This is because the polymer additives reduce the turbulent energy transfer over the length 
scale spectrum. It is also clear from Fig. la that at large values of n the curves are crowd- 
ed together, demonstrating the saturation effect [2, 3], i.e., the reduced effectiveness at 
overly high concentrations. Curve 5 in Fig. la describes the velocity fluctuation energy dis- 
tribution in the hypothetical situation in which there is absolutely no turbulent transfer. 
Comparison of this curve with the curves corresponding to turbulent flow at high polymer con- 
centrations suggests that the polymer additives are not capable of completely suppressing 
turbulent transfer. 

1461 



#(FI a 

1 

j84 2 ~  
, 

I l l  
] t  / 

2 
2 lt7 -a / I I 

78-3 it7-2 18-7 7 p 
pre) b 

7 / if" 

70-I , i  2 

70-3 gl -~ 70-' 1 .P 

Fig. i. Dependence of the function P(p) on the polymer concentra- 
tion (a) and the Reynolds number (b): (a) Re = 50, i) n = 0; 2) i; 3) 
102; 4) i0~; 5) 7 = 0; (b) n = i, i) Re = 50; 2) i00; 3) 200; 4) 
i000; 5) n = 0; Re = i000. 

It is clear from Fig. Ib that the shape of P(p) depends on the Reynolds number in the 
same way, with and without polymer additives: as the Re number increases the turbulent fluc- 
tuation energy distribution becomes more small-scale. At high Re numbers it is possible to dis- 
tinguish an inertial length scale range on which P(p) ~ p -II~. The difference consists in 
that when n # 0 the value of the function P(p) for small values of p is significantly smaller 
than when n = 0 (this can be confirmed by comparing curves 4 and 5). 

In Fig. 2a we have plotted the function 

, v v ~ v "  i ddp 4/ r(~,)=2vi'V=?(:lm, ~ e(e) (21) 

against the polymer molecule concentration. In Eq. (8) the function T(p) describes that part 
of the turbulent energy flux which is directed from large to small length scales. Clearly, 
this energy flux decreases with increase in the polymer concentration and the decrease is es- 
pecially marked on the interval of small length scales. For large scales the opposite depend- 
ence on concentration is observed. 

We note that when n ~ 0 the term T(p) in (8) does not have a well-defined physical 
meaning. The same can also be said of the last term in (8), whiCh describes the turbulent en- 
ergy transfer from small to large scales. Only the sum of these two terms 

S(9)=T(9)-- '~ G(P) P (p) Re 9 (22) 
has a clear physical content, describing the resultant turbulent energy flux. It is clear 
from Fig. 2b that the total energy flux in the small scale direction decreases strongly with 
increase in n and at high polymer concentrations is ensured only by the large-scale motions 
of the fluid. This directly confirms the previous conclusion to the effect that the dissi- 
pativeness of the turbulence is reduced by polymer additives. 

To obtain a clearer demonstration of the effect of polymers on turbulence it is conven- 
ient to determine the efficiency 6 from the following expression: 
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Fig. 2. Dependence of T(p) (a) and S(p) (b) on the polymer con- 
centration, Re = i00: (a) i) n = 0, 2) 10 2 , 3) 10 3 , 4) I0~; (b) 
i) n = 0, 2) 0.1, 3) 1.0, 4) i0, 5) i00. 

6(u, Re) ~(0, Re)--~(u, Re) 1 ~(,~, Re) 
= ~(o, Re) = ~(o, R e )  (23)  

Figure 3 shows the dependence of 6 on the polymer concentration and the Reynolds num- 
ber. It is clear from Fig. 3a that the efficiency corresponding to the concentrations at 
which saturation sets in increases with Re. At large Re saturation sets in fairly sharply. 
At lower values of Re the concentration dependence is weaker. This behavior is consistent 
with the experimental data on drag reduction [2-4]. The threshold nature of the dependence 
of the effect on the Reynolds number is apparent from Fig. 3b. For all concentrations the 
increase in efficiency begins at Re ~ 30. 

Figure 3b illustrates another important feature of the interaction between polymer mol- 
ecules and turbulence: for each concentration value therejs an optimum Reynolds number for 
which the efficiency has a maximum. This behavior can be explained as follows As the Reynolds 
number increases, the time scale of the turbulent fluctuations decreases and becomes compara- 
ble with thecharacteristic relaxation of the polymer molecules. As a result, there appear in 
the flow ever more points at which the molecule stretching criterion is satisfied. For fair- 
ly high values of Re this criterion is Satisfied almost everywhere. A further increase in 
Re is less effective, since all the molecules in the flow are stretched. As may be seen from 
Fig. 1 in [i], as Re increases the function G begins to take its maximum value even at small 
values of e. At the same time, an increase in Re implies a further increase in the rate of 
inertial energy transfer to the small scales. The relation between the two terms in the ex- 
pression for the resultant energy flux (see (22)) begins to change in favor of the first 
term, as a result of which the dissipativeness of the flow increases. 

This dependence of the efficiency on the Reynolds number, which has, also been confirmed 
experimentally [4], is related to the "viscous" origin of the polymer term in (22) and direct- 
ly confirms the validity of the interaction mechanism on which the theory is based. 

From the resonance nature of the dependence of the efficiency on Re there follows the 
possibility of choosing the optimum hydrodynamic regime for a given polymer solution. 
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Fig. 3. Efficiency as a function of concentration for various 
Reynolds numbers (a) and as a functon of the Reynolds number for 
variuos concentrations (b): (a) i) Re = 40; 2) 50 ; 3) I00; 4) 
200; 5) i000; broken lines) maximum efficiency levels for a giv- 
en Reynolds number; (b) i) n = 0.i; 2) 1.0; 3) i0; 4) i00; 5) 
104; 6) the maximum efficiency curve (6 = i - E/gn=0). 

Another important feature of the problem is associated with the possibility of choosing 
polymer molecules with different values of the characteristic relaxation time T. As may^be 
seen from (16) and (17), T enters into the determination of the functions ~(~) and hence G. 
Thus, the values of T strongly influence the function G. 

Figure 4 shows the efficiency as a function of the Reynolds number and the polymer con- 
centration for various values of T. It is clear from Fig. 4a that with decrease in the poly- 
mer molecule relaxation time T the beginning of the effect is displaced towards higher Rey- 
nolds numbers. This is natural since a decrease in T means that the polymer molecules in the 
flow are stiffer and stretch at higher values of the Reynolds number. 

It can be seen from Fig. 4b that a decrease in T leads to a diminution of the effect 
at any concentration. As T tends to zero, the effect disappears completely, since in this 
case the conditions of stretching of the molecules in the turbulent flow cannot be realized. 

Figure 5 shows the efficiency as a function of the relaxation time for various values 
of the Reynolds number. It is noteworthy that the efficiency increases, reaches a maximum and 
does not decrease with increase in T for any value of the Reynolds number. From this we may 
conclude that polymers with a large relaxation time are more efficient. Fromthis figure it 
is also clear that for polymers with small T the regime with high Reynolds numbers is optimal, 
while for polymers with a larger relaxation time T the regime with lower Reynolds numbers is 
more favorable. 

We note that T enters into the determination of the function G through the dimension- 
less complex �9 = T/~T, where ~T = L2/v (Eqs. (16)-(18)). This means that all the effects as- 
sociated with a change in T can be achieved by varying the length scale L. By choosing a suit- 

able characteristic velocity ~ q  it is possible to leave the Reynolds number unchanged. 

This explains the experimentally observed diameter effect, namely that the quantitative re- 
sults associated with the action of polymers are different in pipes of different diameter for 
the same Reynolds number [2-4]. 

The second diameter effect, associated with the fact that a degraded polymer solution 
displays the original efficiency in pipes of smaller diameter [2], also finds a natural ex- 
planation within the framework of the present model. Thus, the value of ~, reduced as a re ~ 
sult of degradation, can be restored by a decrease in the length scale L. 

We also note that if we plot all the relations 6(Re, ~ n), calculated for any values of 
the polymer molecule concentration and any relaxation time T, then they do not rise above a 
certain conventional line, which passes below the line characterizing the relation 6(Re) in 
the absence of turbulent transfer. This line is the analog of the experimentally established 
Virk asymptote [2]. 

Conclusions 

In [i] an equation was derived for the function Pt(r) describing the length scale dis- 
tribution of the turbulent velocity fluctuation energy in a flow of dilute linear high-mol- 
ecularlpolymer solution. The derivation was based on the assumption that in the turbulent 
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Fig. 4. Efficiency as a function of Reynolds number (a) and poly- 
mer concentration (b) for various values of T, Re = i00: (a) i) 
T = 0.3-10 -3 sec; 2) 0.707.10-3; 3) 10-3; (b) i) T= 0; 2) 0.5-10 -3 
sec; 3) 0.707.10-3; 4) 10 -3 . 

flow the polymer molecules are subjected to intense stretching at points in the flow at which 
the stretching criterion is satisfied, so that at those points the viscosity of the fluid in- 
creases. 

An analysis of the equation obtained shows that the presence of the polymer makes the 
turbulent flow less dissipative. 

In this study the steady-state form of the equation derived in [i] is solved numerical- 
ly. It is established that the addition of a polymer leads to substantial reorganization of 
the spectral structure of the turbulent flow. As the polymer concentration increases, the 
function P(p) decreases on the small length scale interval and increases at large length 
scales. The form of the function P(p) changes only slightly. On the inertial length scale 
range the usual law of variation of this function P(p) ~ p-i/3 is preserved. The bunching of 
the curves with increase in concentration confirms the existence of a saturation effect. 
The function S(p) describing the total turbulent energy transfer over the length scale 
spectrum varies strongly. With increase in concentration this function is nonzero only in 
the region of the length macroscale of the turbulent fluctuations. The form of this function 
at high values of the polymer molecule concentration directly demonstrates the decrease in 
dissipativeness. 

It is shown thatthe efficiency of the polymer admixture will depend on the Reynolds num- 
ber and for each concentration of a given polymer there is an optimum value of Re for which 
the efficiency is maximal. 

The threshold nature of the Toms effect, observed experimentally, is confirmed. For a 
polymer with a specific value of the relaxation time T the effect begins at the same Reynolds 
number for all concentrations. In the case of polyethylene oxide, for which T ~ 1.10 -3 sec, 
the threshold Reynolds number is equal to 30. It is shown that as T decreases, the value of 
the threshold Reynolds number increases strongly. 

An analysis of the solution shows that the efficiency of the polymers 6 reaches maxi- 
mum values as T increases, i.e., "soft" polymer molecules (moleculeswith a high molecular 
weight) are the most efficient. When T < 5.10 -3 sec the efficiency increases as Re increases, 
and when T > 11.10 -3 sec it decreases. At intermediate values of T the dependence of the 
efficiency on Re is irregular. 

The results obtained can be useful for choosing the optimum hydrodynamic regime in work- 
ing with specific polymers and for choosing a suitable polymer solution if the hydrodynamic 
regime is determined by other factors. 

It is shown that the polymer molecules are not capable of completely suppressing turbu- 
lent transfer. There is a certain minimum 6(Re) relation which passes below that obtained in 
the absence of turbulent friction and is an analog of the experimentally confirmed Virk asymp- 
tote. 

The model provides a perfectly natural explanation of the experimentally observed diam- 
eter effect and the so-called second diameter effect associated with the degradation of the 
polymer solution. 
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Fig. 5. Efficiency as a function of T for 
various vaules of Re, n = i: i) Re = I00; 
2) 2oo; 3) 500. 

From the above it is clear that our results are in good qualitative agreement with the 
experimentally observed facts relating to the effect of polymer admixtures on turbulence [2, 
3]. It is also possible to note acertain quantitative correspondence. An analysis of the 
dependence of th~ efficiency on the polymer concentration shows that the concentrations range 
from the appearance of the effect to the state of saturation spans 2-3 orders. This is con- 
sistent with the analogous experimental curves[2-4]. 

At Re ~ i00 (which corresponds to values of the exernal Reynolds number Re ~ 105 ) the 
maximum efficiency reaches 80%. This is also in agreement with the experimental data [2-4]. 

In general, the theoretical model developed provides a good basis for solving problems 
of practical importance, in particular problems associated with the optimization of the pro- 
cess of turbulent mixing of polymer solutions in water. 

In these circumstances it is necessary to be able to solve the problem of the evolution 
of the velocity field and the scalar field of the polymer admixture, which are interrelated. 

NOTATION 

Pt(r), function describing the length scale distribution of the turbulent fluctuation 
energy; T, characteristic relaxation time of the polymer molecule; v, viscosity coefficient 
of the solvent; v D, longitudinal viscosity coefficient of the solution; B(r, t), longitudinal 
correlation function of the velocity field; q(t), average velocity field turbulent fluctua- 
tion energy; fi -~ fi (x, t), random force vectorfield; l(r, t), function describing the ef- 
fect of the polymer on the structure of the function Pt(r); L0, characteristic length scale 
of the initial velocity field; To, characteristic time of the turbulent velocity fluctuations 

^ .~ p ' ( p )  T 2 ,  
at t = 0; r nondimensionalized turbulent energy dissipation rate; y=p~, z=--.~ ~,=t-,v , the 

characteristic viscous dissipation time at the length scale L. 
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